Аннотация

Обоснована целесообразность использования натуральных ингредиентов для разработки рецептур хлебных палочек диабетического назначения. Исследовано влияние тонкодисперсных овощных и фруктовых порошков, CO_2 -экстрактов, подсластителей на качество хлебных палочек. Из всех исследованных образцов изделия с содержанием: тонкодисперсных овощных и фруктовых порошков из винограда, яблок, топинамбура, тыквы в количестве 10%; мускатного ореха, лимона, CO_2 -экстрактов корицы 0.05% и подсластителя 0.12% от массы муки, шоколада 0.2% от массы муки обладали наилучшими показателями.

Ключевые слова: Сахарный диабет, биологические активные вещества, хлебобулочные изделия диабетического назначения, подсластители, тонкодисперсные овощные и фруктовые порошки, СО₂- экстракты, показатели качества.

Almukhanova A.B., Velyamov M.T.

Kazakh national agricultural university

TECHNOLOGY DEVELOPMENT OF SPECIALIZED BAKERY PRODUCTS WITH THE ADDITION OF BIOLOGICALLY ACTIVE SUBSTANCES THE STUDY OF QUALITY INDICATORS

Annotation

The expedience of the use of natural ingredients for bread recipes development sticks of diabetic supplies. The influence of fine vegetable and fruit powders. CO₂-extracts, sweeteners on the quality of the bread sticks. The best results have articles containing: fine fruit and vegetable powders from Jerusalem artichoke, gapes, apples, pumpkins in the amount of 10%; CO₂-extracts of cinnamon, nutmeg, lemon 0.05% and 0.2% of the mass of a chocolate flour, sweetener-0.12% of the flour weight.

Key words: Diabetes mellitus, biological active substances, diabetic bakery products, fine vegetable and fruit powders, CO₂ extracts, sweeteners, quality indicators.

УДК 595.745

Альпейсов Ш.А., Абеуов Х.Б., Пилин Д.В.

Казахский национальный аграрный университет, Казахский НИИ рыбного хозяйства, г. Алматы

ФАУНА РУЧЕЙНИКОВ МАЛЫХ ВОДОЁМОВ СЕВЕРО-ЗАПАДНОГО КАЗАХСТАНА*

Аннотация

В работе приводится анализ современного видового состава ручейников водоёмов северо-западного Казахстана на основании имеющихся литературных данных и результатов собственных сборов авторов, выполненных в 2009-2016 гг.

Ключевые слова: ручейники (Trichoptera), северо-западный Казахстан, видовой состав, количественные показатели, хозяйственное значение.

Ввеление

Фауна ручейников Казахстана изучена достаточно слабо. В разное время было отмечено присутствие 148 видов из 59 родов и 17 семейств [1].

На территории северо-западного Казахстана большинство водоёмов входят в бассейн реки Жайык (Урал). Прежде всего, это водоёмы Западно-Казахстанской и Актюбинской областей. Условно их можно разделить на следующие большие группы: водоёмы Урало-Кушумской оросительно-обводнительной системы, включающей реку Кушум, расположенный на ней каскад водохранилищ; Камыш-Самарскую водную систему, включающую реки Большой и Малый Узень с придаточными водоёмами; реки, впадающие в среднее течение реки Жайык с притоками и водохранилищами (остальные водоёмы Западно-Казахстанской и Актюбинской областей).

Большинство этих водоёмов являются местом обитания личинок ручейников, разнообразие которых так или иначе приурочено к данным водоёмам.

Целью данной работы стало определить видовой состав фауны ручейников водоёмов северо-западного Казахстана. Для этого дана краткая характеристика исследованных водоёмов и список видов, личинки которых обитают в них.

Материалы и методы исследований

В 2009-2016 годах сбор личинок ручейников проводился на разнообразных биотопах водоёмов северо-западного Казахстана (Западно-Казахстанская и Актюбинская области). Для отбора использовались гидробиологические сачок и дночерпатель Петерсена.

Собранные материалы фиксировались этиловым спиртом (96 % об.) для долгосрочного хранения. Определение видовой принадлежности осуществлялось по пособию С.Г. Лепневой [2].

Результаты исследований и их обсуждение

Урало-Кушумская обводнительная система сооружена реке Кушум (правобережном оттоке Жайыка) и, соответственно, полностью обводняется за счёт поступающих на протяжении круглого года вод реки Жайык. В целом система характеризуется полупроточным режимом, связанным с проведением водохозяйственных работ по накоплению и переброске воды. Общая минерализация в среднем по системе $M\Gamma/дм^3$, причём минимальная, отмеченная ниже водохранилища, была 504 мг/дм³, а ниже Пятимарского водохранилища составила 810 мг/дм3. В водохранилищах минерализация была несколько выше: минимальная, в Кировском водохранилище составила 564 мг/дм³, максимальная – в Пятимарском водохранилище, самом нижнем в каскаде, - 904 мг/дм³. Таким образом, следует сделать вывод о том, что минерализация в водоёмах системы последовательно увеличивается вниз по течению. Полупроточный гидрологический режим создаёт благоприятные условия для развития высшей водной растительности, прежде всего роголистника и рдестов, являющихся подходящим субстратом для фитофильных ручейников – Neureclipsis bimaculata (Linnaeus, 1758), Ecnomus tenellus (Rambur, 1842), Agraylea multipunctata Curtis, 1834, Cyrnus flavidus McLachlan, 1864, Leptocerus tineiformis Curtis, 1834. В.А. Киселёва и П.Б. Идаятов в своей работе по гидрофауне Битикского водохранилища и озера Жалтырколь отмечали присутствие ручейников, но без указания видовой специфичности [3].

Камыш-самарская водная система включает реки Большой и Малый Узень, зарегулированными на всём своём протяжении. Для них также характерен полупроточный режим. В связи с незначительным обводнением данные реки на большем протяжении мелководные, хорошо прогреваются, что создаёт благоприятные условия для развития водной растительности и связанной с ней фитофильной фауной. Минерализация водоёмов Камыш-самарской водной системы составляет 2,0-2,5 г/дм³ в реках Большой и Малый Узень, соответственно, а в озёрах может составлять более 4,0 г/дм³ (озеро Сарышыганак). Фауна ручейников здесь представлена следующими видами: *Ecnomus tenellus* (Rambur, 1842), *Cyrnus flavidus* McLachlan, 1864, *Agraylea multipunctata* Curtis, 1834.

Притоки первого порядка реки Жайык расположены преимущественно в среднем течении. Лишь река Барбастау впадает в нижнем течении. Данные реки имеют неравномерный сток, большая часть которого приходится на период весеннего половодья в связи с чем для хозяйственных нужд на них в разное время сооружались плотины и дамбы. В разные годы исследованию подверглись следующие реки с сооружёнными на них водохранилищами: река Илек (верховья и среднее течение), в том числе Актюбинское водохранилище; река Ембулатовка с четырьмя прудами и водохранилищами; река Малая Быковка с водохранилищем, река Рубёжка с водохранилищем, река Барбастау с водохранилищем. Водохранилища и пруды на данных реках достаточно хорошо обводнены, имеют заросшие подводной растительностью участки, благоприятные условия для развития фитофильной фауны, в том числе и ручейников. Минерализация данных водоёмов слабая и средняя (от 245 мг/дм³ в реке Ембулатовка и до 2,6 г/дм³ в водохранилище на реке Барбастау). В данных водоёмах чаще всего встречались два вида: Ecnomus tenellus (Rambur, 1842) и Leptocerus tineiformis Curtis, 1834. Для реки Караоба было отмечено ещё два вида: Limnephilus flavicornis (Fabricius, 1787) и Lepidostoma hirtum (Fabricius, 1775). Г.А. Стальмакова в своей сводке для притоков Жайыка дополнительно приводит следующие виды: Phryganea striata L., Molanna angustata Curtis, Oecetis furva Rambur, Triaenodes bicolor Curtis, Mystacides longicornis (L.), Limnophilus rombicus L. [4]. В.А. Киселёва и П.Б. Идаятов в 2007 году отмечали в реке Утва присутствие *Phryganea bipunctata* Retzius, 1783 [5].

Реки второго порядка гидрографической сети бассейна реки Жайык, расположенные в Актюбинской области характеризуются сезонной неравномерностью стока, большая часть которого приходится на весеннее половодье. Однако, в отличие от рек, стекающих по более или менее равнинным территориям волго-уральского междуречья, сыртовым уступам правобережья и подурального плато в левобережье Жайыка, долины рек Актюбинской области расположены в более холмистой местности. В связи с этим, их течение не прекращается даже в летний период (в отличие от водоёмов, описанных выше). Поэтому и их аквальный ландшафт более разнообразный, что сказывается и на гидрофауне. Здесь, помимо фитофильных видов, встречаются и литореофильные. Минерализация данных водоёмов низкая и средняя (от 240 мг/дм³ в Каргалинском водохранилище до 1,2 г/дм³ в реке Уил). Фауна ручейников фитофильных сообществ представлена *Ecnomus tenellus* (Rambur, 1842) и *Leptocerus tineiformis* (Curtis, 1834). Для реофильных сообществ был отмечен один вид – *Hydropsyche pellucidula* (Curtis, 1834), обнаруженный на каменистых отмелях реки Каргалы.

Выводы

Таким образом, в разные годы на малых водоёмах северо-западного Казахстана нами было выявлено восемь видов ручейников. Анализ литературных источников показал, что ранее для притоков реки Жайык первого порядка было отмечено ещё шесть видов. Наиболее распространёнными из них были *Ecnomus tenellus* (Rambur, 1842) и *Leptocerus tineiformis* (Curtis, 1834). Наибольшее разнообразие было отмечено для водоёмов Урало-Кушумской оросительно-обводнительной системы, где было отмечено пять фитофильных видов. В перспективе при проведении дополнительных исследований можно будет расширить список видов ручейников малых водоёмов Казахстана.

Литература

- 1. *Smirnova D., Kushnikova L., Evseeva A. et al.* The Trichoptera of Kazakhstan: review. Zoosymposia, Vol. 10, 2016. P. 398-408.
- 2. *Лепнева С.Г.* Фауна СССР. Ручейники. В. 2-х т. Л.: Наука. Фауна СССР. Ручейники

- 3. *Киселёва В.А.*, *Идаятов П.Б.* Некоторые сведения по распространению бентофауны в зоне мелководья р. Урал и её притока р. Утва в июне 2007 г. // Selevinia. 2009. С. 75-80
- 4. Стальмакова Γ .А. К гидробиологической характеристике среднего течения р.Урала и прилегающих пойменных водоемов. // Труды ЗИН. Т. XVI Издательство АН СССР. М., Л.: 1954 С.499-516
- 5. *Киселёва В.А., Идаятов П.Б.* Особенности формирования бентофауны в Битикском водохранилище и озере Жалтырколь (Западный Казахстан) // Selevinia. 2009. С. 68-74.

Альпейсов Ш.А., Абеуов Х.Б., Пилин Д.В.

СОЛТҮСТІК-БАТЫС ҚАЗАҚСТАННЫҢ КІШІ СУ ҚОЙМАЛАРЫНДАҒЫ БҰЛАҚШАЛАРДЫҢ ФАУНАСЫ

Андатпа

Жұмыста қолда бар әдебиет деректері және 2009-2016 жж. авторлардың жүргізген өзіндік зерттеулерінің нәтижелері негізінде Солтүстік-Батыс Қазақстанның су қоймаларындағы бұлақшалардың заманауи түрлік құрамына талдау беріледі.

Кілт сөздер: бұлақшалар (Trichoptera), Солтүстік-Батыс Қазақстан, түрлік құрам, сандық көрсеткіштер, шаруашылықтық маңызы.

Alpeisov Sh.A., Abeuov Kh.B., Pilin D.V.

THE FAUNA OF TRICHOPTERA OF SMALL WATER BODIES OF NORTH-WESTERN KAZAKHSTAN

Annotation

The paper provides an analysis of the current species composition of caddis flies reservoirs of North-Western Kazakhstan on the basis of available literature data and the results of the authors own charges, made in 2009-2016

Key words: caddisflies (Trichoptera), North-Western Kazakhstan, the species composition, quantitative, economic value.

*Исследования проведены за счет гранта по бюджетной программе 217 МОН РК, N20115PK00718

УДК 664.9

Аманова Ш.С., Франко Абуин Карлос Мануел

Алматинский технологический университет

РАЗРАБОТКА ТЕХНОЛОГИИ ПОЛУФАБРИКАТОВ ДЛЯ МЯСНЫХ ПАШТЕТОВ С ПОВЫШЕННОЙ ПИЩЕВОЙ ЦЕННОСТЬЮ

Аннотация

Разработаны рецептура и технология новых мясных продуктов быстрого приготовления – полуфабриката замороженного для паштета с использованием сырья,