МЕХАНИЗАЦИЯ И ЭЛЕКТРИФИКАЦИЯ СЕЛЬСКОГО ХОЗЯЙСТВА

УДК 656.225

Алменова А.А.

Центрально-Азиатский университет

ПОВЫШЕНИЕ НАДЕЖНОСТИ ФУНКЦИОНИРОВАНИЯ ЛОГИСТИЧЕСКОЙ ЦЕПИ В АГРАРНОМ СЕКТОРЕ

Аннотация

В статье описана условия перехода на работу по системе «точно-вовремя», где потребует более глубокого анализа работы подвижного состава и повышению надежности функционирования логистической цели.

Ключевые слова: Автотранспорт, сельское хозяйство, коэффициент, время, водитель, объем, погрузка, разгрузка, себестоимость, стоимость, продукция, логистика.

Введение

Автотранспортные перевозки В аграрном секторе предполагают грузоперевозки сельскохозяйственной техники, так и транспортировку и обеспечение сохранности агропродукции. Сейчас можно говорить о новом направлении в грузоперевозках, которое иногда называю агрологистикой. Оно направлено на доставку сельхозпродукции с учетом требований к перевозке и хранению продукции различных отраслей сельского хозяйства. Для каждой отрасли сельского разрабатываются свои подходы к выбору тары, транспортированию и хранению, условия оформления сопровождающих документов [1].

Перевозки сельскохозяйственных грузов по сравнению с перевозками грузов для других отраслей народного хозяйства имеют особенности, к числу которых можно отнести: сезонность уборки урожая, приводящая к значительным колебаниям в грузообороте и объеме перевозок. Коэффициент неравномерности грузооборота внехозяйственных перевозок колеблется в среднем от 2,5 до 3,5 [2].

В общем комплексе сельскохозяйственных работ транспортные и погрузочно-разгрузочные работы составляют 30—35% от общих затрат труда на возделывание сельскохозяйственных культур и около 17% в животноводстве. В себестоимости сельскохозяйственных продуктов транспортные расходы составляют от 15 до 40%. Всю продукцию сельского хозяйства перевозят от места производства до пунктов хранения, переработки, потребления [3].

Частично решить данную проблему призвана организационная составляющая: высокие требования к эффективности использования данного транспорта, оперативные погрузка-разгрузка, следование без задержек и простоев и т.д.[4].

Материалы и методы

С целью уменьшения себестоимости агропродукции, за счет уменьшения транспортных расходов, рассмотрим следующие: общая стоимость продукции приобретенных от производителей в каждом заготовительно-приемным пункте (ЗПП) считаем равным \sum C зак , с доставкой на перерабатывающий завод, она будет равна

$$C_{np} = \sum_{3a\kappa} C_{3a\kappa} + \sum_{mp} C_{mp} , \qquad (1)$$

где: $\sum C_{mp}$ -затраты на транспортировку продукции с места ЗПП до базы, тг.

Для уменьшения себестоимости приобретенной продукции мы должны определить основные составляющие транспортных затрат.

Общая сумма транспортных затрат считается допустимой при условии

$$\sum C_{smp} \leq 0.1 \sum C_{sa\kappa} , \qquad (2)$$

где, транспортные затраты не превышает 10 процентов, стоимости перевозимой продукций. В США затраты при транспортировке овощи составляет 9 %.

Следующий шаг - определение маршрута движения и выбор транспортных средств. Главная задача, при решении транспортной задачи в данной структуре, это своевременный вывоз сельхозпродукции и обеспечение ритмичности и непрерывности технологической линий завода. Поэтому основным или исходным показателем является постоянное обеспечение продукцией сортировочной и производственной перерабатывающего комплекса базы. Для расчета производительность сортировочной линии W_c кг/час, перерабатывающей линии W_n кг/час и «шоковой заморозки» $W_{\rm M3}$ кг/час. На основании этих данных устанавливается интервал времени доставки продукции. Общая продолжительность работы линии определяется из выражения

$$T_{\pi} = \frac{Q_{o6\kappa}}{W_{c}}; (3)$$

Чтобы обеспечить непрерывность производственной линии комплекса центральной базы, необходимо иметь определенный запас продукции. При определенном интервале доставки продукции, резервный объем продукции должен быть

$$Q_{pesedy} = t\partial \cdot W_{c}. \tag{4}$$

причем $W_c = W_{M3} + W_n$.

Перевозки грузов осуществляются на различных маршрутах, выбираемых в зависимости от размещения пунктов производства и потребления, размеров партии грузов, условий и требований на поставки, грузоподъемности подвижного состава. Различают маятниковые, кольцевые, развозочные, сборные и развозочно-сборные маршруты. Рассмотрим наиболее широко применяемый маятниковый маршрут, на котором движение автомобиля происходит между двумя пунктами. Допустим, автомобиль отправляется из пункта погрузки, после погрузки движется к пункту разгрузки, где разгружается и отправляется в обратном направлении без груза в пункт. На этом цикл перевозки заканчивается. Время на погрузку и разгрузку включает время оформления документов. Введем условные обозначения:

 t_{n_i} -время погрузки i-й ездки

 t_{p_i} -время разгрузки i–й ездки

 $t_{_{\it 2p}_{\,i}}$ -время движения автомобиля с грузом для $\it i$ –й ездки

 $t_{|x_i|}$ -время движения автомобиля без груза для i–й ездки

Общее время перевозки за одну можно определить по формуле

$$T_{ci} = t_{ni} + t_{zpi} + t_{pi} + t_{xi}, (5)$$

Следует отметить, что время перевозки грузов зависит не только от работы автомобиля, но и от организации работы поставщиков и потребителей, в частности от

их режима работы (числа перерывов, длительности обеденного перерыва и т.д.). Логистический подход к моделированию времени на выполнение транспортных услуг требует увязки работы автомобильного транспорта с режимами работы поставщиков и потребителей груза, поэтому моделировать внутреннюю перевозку грузов, особенно на короткое расстояние, необходимо в целом за рабочее время суток. Тогда, в первом приближении время начала перевозок грузов T можно определить по формуле

$$T_{\mathcal{M}} = T_{me} - \sum_{i} T_{ei}$$
 (6)

где T_{me} -время доставки суточного (договорного) объема грузов «точно-во время», ч. $T_{c} = \sum_{i} T_{ci}$ -время на перевозку суточного объема грузов, ч.

Все составляющие формулы являются случайными величинами. Верхняя граница доверительного интервала « точно - во время» Т $_{ms}^{e}$ может быть определена по формуле

$$T_{ms}^{e} = T_{u} + T_{c}^{-} + \alpha_{p} \cdot \delta_{mc} , \qquad (7)$$

где T_c^- -среднее значение времени доставки суточного объема грузов, ч.

 $\delta_{\it mc}$ -среднеквадратическое отклонение времени доставки суточного объема грузов, ч.

 $lpha_{-p}$ -квантиль нормального распределения, соответствующий вероятности Р.

Величина \bar{T}_c и δ_{mc}^2 определяются по формуле:

$$\bar{\mathbf{T}}_{c} = \sum_{i} \bar{\mathbf{T}}_{ci} \tag{8}$$

$$\delta_{\mathrm{T}}^{2} = \sum_{j=1}^{N} \delta_{j}^{2} + 2 \sum_{isj} r_{ij} \delta_{i} \delta_{j}, \qquad (9)$$

где \bar{T}_{ei} -среднее значение времени на выполнение i-й ездки;

 δ_{ei} -среднеквадратическое отклонение времени на выполнение і–й ездки;

 $r_{\it ij}$ -коэффициент парной корреляции между временем на выполнение і–й и ј-й ездки.

Среднее время на выполнение і-й ездки равно

$$\bar{T}_{ei} = \frac{T_{eij}}{N}$$
 (10)

где Т еі -время на выполнение і-й ездки при ј-й ездки реализации;

N-число реализаций.

При определении Т $_{eij}$ необходимо учитывать, с одной стороны, организацию работы поставщика и потребителя, в частности время начала и окончания технологических перерывов в работе $3\Pi\Pi$, а другой - ограничения режима труда и отдыха водителя. Поэтому формула для определения продолжительности времени

ездки Т еі должна быть откорректирована и представлена в виде

$$T_{ei} = t_{ni} + t_{pi} + t_{pi} + t_{xi} * \eta_i + \psi_i,$$
 (11)

где η_i - случайная составляющая, учитывающая технологические перерывы ЗПП или не успели собрать соответствующий объем продукции;

 ψ_i - случайная составляющая, учитывающая обеденные, технологические перерывы у приемщиков центральной базы или они принимают другую машину с грузом;

Включение составляющих η_i и ψ_i обусловлено возможными пересечениями, частичными накладками составляющих перевозочного процесса и времени обеденных, технологических перерывов поставщика или потребителя. Так, например, погрузка автомобиля у ЗПП не будет объема продукций, если на момент прибытия оставшееся время до уборки урожая

 $\eta_{i} = (Q_{nocm}^{H} - T_{o} - T_{ei})$ меньше самого времени погрузки, т.е.

$$\left(Q_{nocm}^{\mu} - T_o - T_{ei}\right) t_{ni} , \qquad (12)$$

где $Q^{"}_{nocm}$ -начала технологического перерыва поставщика, ч.

 $T_{_{\it ei}}$ -использованное рабочее время водителя на перевозку груза, ч.

В этом случае время на выполнение перевозочного процесса возрастает на величину ($\Pi_i + T_{ob}$) . Время доставки груза в пункт разгрузки составит:

$$T_{ii} = (t_{ni} + \Pi_{i} + T_{ob}^{1}) + t_{oni}$$
 (13)

где Т - время технологического перерыва поставщика, ч.

Погрузка у поставщика также не будет выполняться, если автомобиль прибыл во время обеденного перерыва. Время на выполнение перевозочного процесса возрастает на величину: $\mathbf{T}_{ob} - \left| \boldsymbol{\Pi}_i \right|$) Так как в этом случае величина $\boldsymbol{\Pi}_i$ -отрицательна, то справедлива формула для расчета \mathbf{T}_{li} .

Аналогично в пункте разгрузки у потрибителя груза операция разгрузки не будет производиться, если на момент прибытия автомобиля оставшееся время до обеденного перерыва $R_i = \left(Q_{nom}^n - T_0 - T_{ei} - T_{li}\right)$ меньше самого времени разгрузки, т.е.

$$(Q_{nom}^{n} - T_{0} - T_{ei} - T_{li}) \chi t_{pi}$$
 (14)

где Q_{nom}^{n} -начало обеденного (технологического) перерыва потребителя, ч.

В этом случае время на выполнение перевозочного процесса возрастает на величину ($R_i + T_{\alpha\beta}^2$). Время цикла перевозки составит

$$T_{ei} = R_i + T_{oo}^2 + t_{pi} + t_{xi} + T_{li} , \qquad (15)$$

где Т $_{o6}^{2}$ -время обеденного перерыва потребителя, ч.

Разгрузка у потребителя также не будет выполняться, если автомобиль прибыл во время обеденного перерыва. В этом случае может быть использована формула для пересчета $T_{\it ei}$.

С учетом ежедневного обязательного времени отдыха (11 час.) водителя, суммарное время на перевозку грузов с одним водителем не должен превышать, т.е.

$$\sum_{i} T_{ei} \leq 24 - T_{omo} , \qquad (16)$$

где T_{omd} -время ежедневного отдыха водителя, ч.

Необходимо отметить случайный характер составляющих перевозочного процесса и наличие ряда ограничений, для определения времени на перевозку грузов используется метод статистического моделирование.

Вывол

Переход на работу по системе «точно-вовремя» потребует более глубокого анализа работы подвижного состава на маршруте, корректировке существующих нормативов и учета имеющихся сверхнормативных простоев, что позволит повысить

достоверность и реальность плановых заданий, а в итоге это приведет к повышению надежности функционирования логистической цели.

Литература

- 1. Ильченко А.Н. Методология и инструментарий системы согласования экономических решений в агропромышленном комплексе региона. /Дисс. на соиск. уч. степени д.э.н.- Москва, 1993. 279 с.
- 2. Каримова 3., Реутов А. О развитии крестьянских (фермерских) хозяйств (1990-2000 годы) // Экономика и статистика. 2001. №2. C.24-26
- 3. //Казахстан и его регионы Алматы, 2001.- №1
- 4. Сапарбаев А.Д., Ахметов К.А., Макулова А.Т. Моделирование агросистем. Алматы. Лем, 2002 271 с.

Алменова А.А.

АГРАРЛЫҚ СЕКТОРДАҒЫ ЛОГИСТИКАЛЫҚ ТІЗБЕК ЖҰМЫСЫНЫҢ СЕНІМДІЛІГІН АРТТЫРУ

Мақалада қозғалмалы құрамның жұмысын терең талдауды және логистикалық тізбектің сенімділігін арттыруды талап ететін «дәл-уақытында» атты жұмыс істеу жүйесіне көшуі сипатталған.

Кілт сөздер: автокөлік, ауыл шаруашылығы, коэффицент, уақыт, көлем, тиеу, түсіру, өзіндік құн, баға, өнім, логистика.

Almenova A.A.

INCREASE OF RELIABILITY OF FUNCTIONING TO LOGISTIC CHAIN IN AGRARIAN SECTOR

In the article described terms of passing to work on the system "exactly-in time", where will demand the deeper analysis of work of rolling stock and to the increase of reliability of functioning of logistic aim.

УДК 631.371: 621.311

Бисекенов А.А., Умбеткулов Е.К.

Казахский национальный аграрный университет

О ВЕРОЯТНОСТИ КАСКАДНЫХ АВАРИЙ В ЭНЕРГЕТИЧЕСКИХ СИСТЕМАХ ПРИ ЗЕМЛЕТРЯСЕНИЯХ

Аннотация

Проведен краткий анализ известных случаев каскадных аварий электроэнергетических зарубежных стран. Приведена блок-схема системах обобщенного сценария этих аварий и дана характеристика причин развития каскадной Разработан вероятный сценарий каскадных аварий при сильных землетрясениях.